Phenology and adaptive landscapes in future climate: what consequences for the maladaptation of tree species?

Julie Gauzere

Context

Advancement of spring phenology in many species

→ plastic response of phenology to spring temperatures

Does trait variation allow tracking the variation in optimum phenotypic traits?

Anderson et al. Proc R Soc. B (2012)

Context

Concern that mismatch increases with CC

→ increasing maladaptation?
→ extinction risk?

Models of phenotypic adaptation

- stabilizing selection around some optimal phenotype
- environmental change only affects the optimum

Changes in the optimum with environmental variation are often difficult to estimate, especially in long-lived plant species

a complementary approach to empirical estimates

PHENOFIT model

Chuine and Beaubien Ecol Lett. (2001)

Step (1) : use calibrated reaction norm to predict a local budburst date

!!! Model does not include evolutionary processes

Study sites and species

<u>Climate</u>: 2 valleys in the Pyrenees Populations ranging from 100 to 1700 m

<u>Simulation period</u>: Historical climate 1960-2012 Future climate 2013-2099 (RCP4.5, 8.5)

Species:

Fagus sylvatica

Quercus petraea

Abies alba

Aims and questions

Derive fitness landscapes in tree species from a mechanistic model

How do the optimum and shape of fitness landscapes change with environmental variation ?

Does phenotypic mismatch lead to maladaptation in future climate ?

Measures of maladaptation

Ecological vs evolutionary perspectives of maladaptation

Simulated fitness landscapes - historical

Selective pressures - historical

Simulated fitness landscapes - future

Fagus sylvatica

- Earlier spring phenology with climate warming, more uniform across elevations

- Larger width of the fitness landscape and increase in max fitness \rightarrow less constraints on bud development

Selective pressures - future

Fagus sylvatica

Selection relaxes as climate warms

 \rightarrow reduction of maladaptation

Simulated fitness landscapes - future

Quercus petraea

- Max fitness increases at high elevation and decreases at low elevation
- Maladaptation caused by a change in max fitness (also for fir)

Main results and concluding remarks

• Strong change in the shape of fitness landscape, not only the optimum

 \rightarrow focusing on other parameters of fitness functions than optimum may be critical to accurately predict the rate of environmental change populations can cope with

 Maladaptation would occur because of a change in maximum fitness rather than increased phenotypic mismatch

 \rightarrow relaxed selective pressures for earlier spring phenology with climate warming

Results are highly dependent on the assumption of the PHENOFIT model (e.g., hydraulic failure not modelled)

Acknowledgments

Isabelle CHUINE

Ophélie RONCE

<u>MeCC collaborators</u>: S. Oddou-Muratorio, H. Davi, S. Delzon, L-M Chevin, A. Kremer

<u>Data</u>: ONF RENECOFOR, J-m Louvet (Biogeco), Experimental Units of Pierroton and Toulenne

Funding: ANR-13-ADAP-0006 project MeCC

gauzere.ju@gmail.com