Caractérisation de la phénologie et de la dormance du pommier: apports de collaborations internationales

Journée de restitution du projet Perpheclim; 5 Novembre 2014 - Montpellier Gutavo Malagi, Adnane El Yaacoubi, Marc Bonhomme, JM Legave

- Elargir la caractérisation à des régions dites à 'climat doux' où la culture rencontre des difficultés, voire est quasiment inadaptée
- > Comparer les conditions climatiques actuelles de ces régions à celles des régions tempérées
- ➤ En déduire des évolutions et vulnérabilités en régions tempérées, compte tenu des prédictions sur l'évolution climatique

Les actions entreprises

<u>Les projets</u>

- une collaboration avec des organismes de recherche dans le sud brésilien (projet Capes Cofecub, 2011-2014)
- ➤ une collaboration avec l'INRA Meknès dans le nord marocain (projet Prad, 2011-2013)

NB: collaborations européennes antérieurement initiées

Les travaux

- collecte de dates de floraison et reconstitution de séries phénologiques
- > acquisition de données biologiques sur la cinétique de dormance des bourgeons (tests de forçage; végétatifs et floraux)
- > collecte de températures journalières et reconstitution de séries thermiques
- quantification d'effets de chilling et de forcing suivant des modèles contrastés

Bonn: Deutschland (50 N, 7E)

Angers: France (47 N, 0 W)

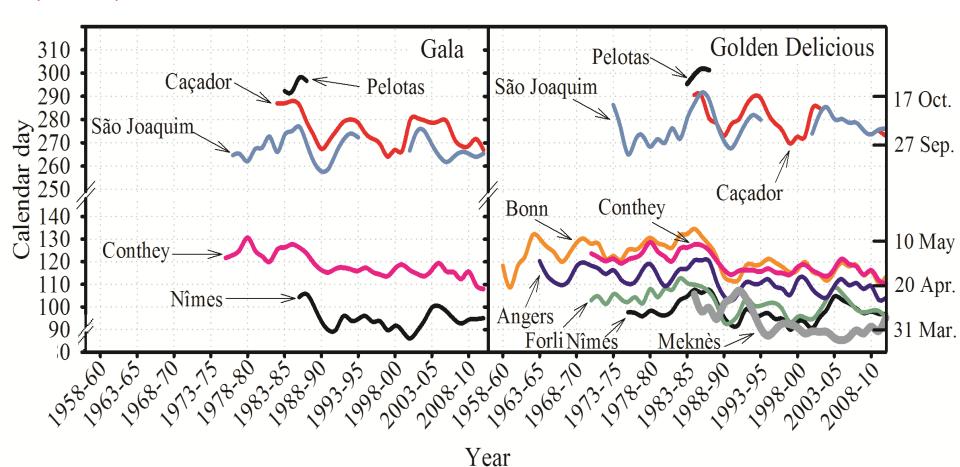
Conthey: Switzerland (46 N, 7 E)

Forlí: Italy (44 N, 12 E)

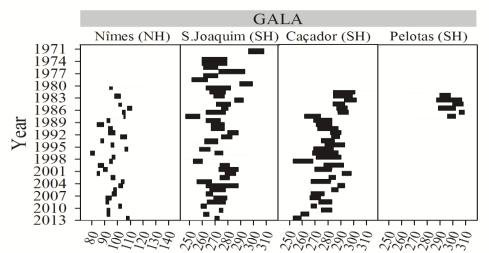
Nîmes: France (43 N, 4 E)

Meknès: Morocco (33 N, 5 W)

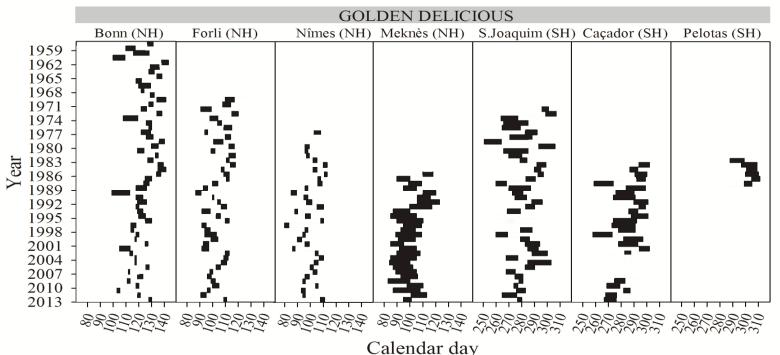
Caçador: Brazil (26 S, 51 W)


São Joaquim: Brazil (28 S, 50 W)

(site d'altitude, 1350 m)


Pelotas: Brazil (32 S, 52 W)

Tendance temporelle de l'époque de floraison : des différences spatiales de cinétique dans un passé récent


- > avancées à la fin des années 80 en Europe (rupture), tendance devenue moins nette en régions méditerranéennes
- > avancée au Maroc plus tardive?
- > peu ou pas d'évolution dans le sud Brésilien ?

Durée de floraison (ex. BBCH 61 à 65) : davantage de contrastes, durées courtes en climat tempéré et longues en climat'doux'

- > pas de tendances temporelles
- > pas de relation avec l'époque de floraison

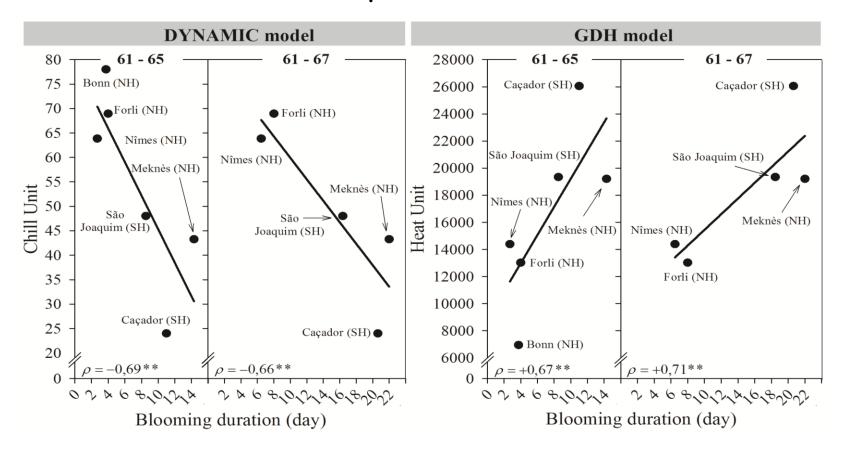
Déterminisme actuel de l'époque de floraison : un net contraste entre les régions européennes (NH) et brésiliennes (SH)

Corrélation entre quantité de froid et date de floraison (1984-2012)

Site	North Carolina	Dynamic	PCU	Unified
Bonn	0.06	0.10	0.07	0.05
Conthey	-0.17	-0.06	-0.19	0.16
Angers	0.19	0.19	0.20	0.12
Forlí	0.02	0.12	0.04	0.12
Nîmes	0.01	0.09	-0.06	0.00
São Joaquim	-0.55	-0.68	-0.67	-0.67
Caçador	-0.68	-0.60	-0.70	-0.69

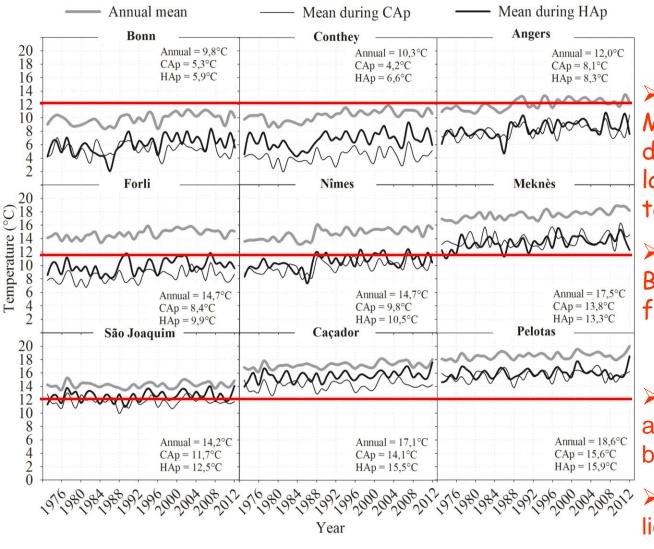
CAp – Chilling Accumulation period				
NH	SH			
Oct.	Apr.			
Nov.	May			
Dec.	Jun.			
Jan.	Jul.			

- > en Europe, pas de corrélation, y compris en régions méditerranéennes
- > dans le sud brésilien, nette corrélation négative significative (P<0.01) : plus la quantité de froid accumulée est faible, plus la floraison est tardive


Corrélation entre quantité de chaleur et date de floraison (1984-2012)

Site	GDH	DTS	F1Gold1
Bonn	-0.93	-0.85	-0.90
Conthey	-0.84	-0.71	-0.65
Angers	-0.62	-0.57	-0.59
Forlí	-0.85	-0.73	-0.77
Nîmes	-0.71	-0.69	-0.71
São Joaquim	-0.24	-0.22	-0.18
Caçador	-0.20	-0.10	-0.14

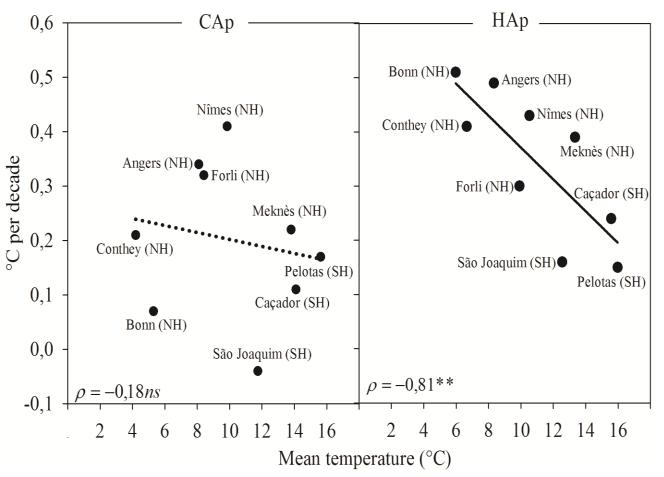
HAp – Heat Accumulation period				
NH		SH		
Feb.		Aug.		
Mar.		Sep.		
Apr.		Oct.		


- ➤ en Europe, forte corrélation négative significative (P<0.01), y compris en régions méditerranéennes : plus la quantité de chaleur accumulée est élevée, plus la floraison est précoce
- > dans le sud brésilien : pas de corrélation significative

Quel déterminisme pour la durée de floraison?

- à échelle mondiale, plus la quantité de froid accumulée est faible (CAp), plus la durée de floraison est longue
- à échelle mondiale, plus la quantité de chaleur accumulée est élevée (HAp), plus la durée de floraison est longue

Evolutions et niveaux et de température pour l'ensemble des sites étudiés: de forts contrastes à relier à la phénologie


Epoque de floraison

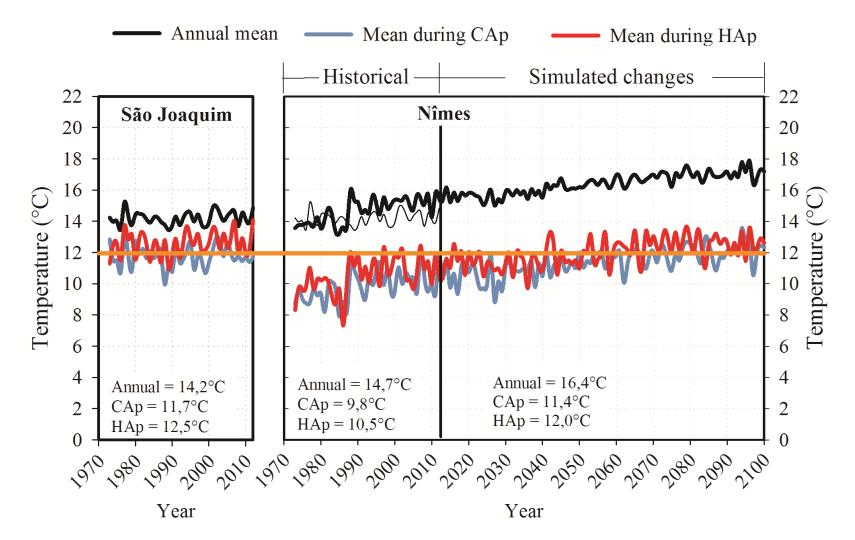
- avancées en Europe,
 Maroc : réchauffement fin d'hiver et printanier depuis la fin des années 80 ou plus tardivement
- peu ou pas d'évolution au Brésil : réchauffement faible ou inexistant

Durée de floraison

- courte en Europe : liée aux niveaux relativement bas des T° en CAp et HAp ?
- longue (Brésil, Maroc) : liée à des niveaux élevés ?

Relation entre niveau et accroissement de température : des contrastes régionaux inattendus à considérer avec prudence (influence de la période d'observation considérée, ...)

Période de Chilling


 accroissement plus marqué en Europe dans les sites méditerranéens et océaniques

Période de Forcing

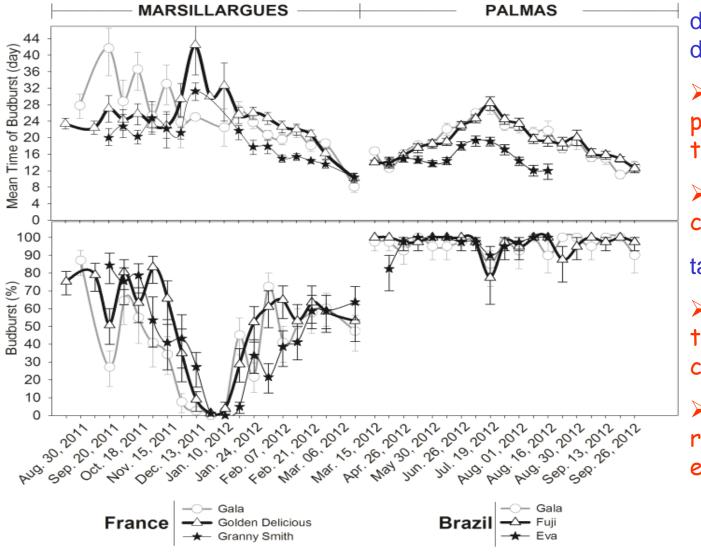
➤ tendance à un accroissement plus marqué dans les sites les plus froids (contraste NH/SH)

Vulnérabilité des régions méditerranéennes en Europe:

vers des floraisons moins précoces à plus tardives, et plus longues en fonction de dépassement de seuils de T°?, quelles échéances?

ARPEGE model Météo France Scenario A1B of the SRES family

Acquisition de données biologiques sur la cinétique de dormance des bourgeons


Protocole

- > un site français (CEHM), un site Brésilien, un site marocain
- > deux cycles annuels, des variétés communes (Gala, Golden) et à besoins en froid différents (moyen à low chilling)

Travaux et apports

- > tests de forçage: bouture à 1 bourgeon, croissance ébauche florale
- ➤ des jeux de données inédits: accès aux effets du réchauffement (comparaison sites très contrastés), accès à l'évolution de la dormance en liaison avec la teneur en eau, accès à l'effet variétal
- > apport sur la compréhension de l'entrée en écodormance
- apport pour la modélisation

Caractérisation de la dormance des bourgeons végétatifs (test bouture): des cinétiques globalement très contrastées, faible endodormance en climat doux

délai moyen de débourrement

- variation saisonnière plus marquée en climat tempéré
- > faible intensité en climat doux

taux de débourrement

- variation saisonnière très contrastée en climat tempéré
- > intensité régulièrement élevée en climat doux

Conclusion

- des résultats attendus mais précisés: contraste des durées de floraison, contraste des déterminismes
- des résultats inattendus: probable complexité du déterminisme de la durée de floraison?, indépendance des caractères époque et durée?,
- intérêt des comparaisons à large échelle par collaborations internationales: valider l'information fournie par modélisation prédictive, relier la phénologie au comportement agronomique
- poursuivre la collaboration avec le Brésil (nouveau projet)
- rechercher de nouveaux partenaires (Australie, ...)