Use of a multi-species grassland model for analysing the response of phenology to climate change

T. Moulin^{1,*}, P. Calanca²

¹ Institute of Biology, Theoretical Ecology, Freie Universität Berlin
² Agroecology and Environment, Climate and Agriculture, Agroscope, Zurich

* E-mail: thibault.moulin@fu-berlin.de

- At the world scale, grasslands and agricultural land used for forage production: $\rightarrow 80\%$ of the total agricultural area (Statistical Office of the European Union, 2010)
- ▶ In France, grasslands (both permanent and temporary):
 - $\rightarrow 42\%$ of the agricultural area (Service de l'Observation et des Statistiques, 2010)

Thibault Moulin

Modelling biodiversity dynamics of permanent grasslands 1/15

Definition: permanent grassland

Mown / grazed grassland, not ploughed or sowed for several years (\geq 5), with mainly a natural origin of the composition ^{*a*}

^a(Mazoyer, 2002; Petit et al., 2005)

"Hot spot" of plant biodiversity ...

- World record of plant species richness
 - At fine scale with up to 89 species on $1m^{2}$ a
- A high species richness at the regional scale:
 - A pool of more 1000 species in Franche-Comté
 - In average, 30 species per grassland (3 to 92) ^b

^a(Wilson et al. 2012)

^b(Mauchamp et al. 2014)

... facing many disturbances...

- Anthropogenic disturbances: grazing, mowing, fertilizing
- Climatic disturbances: drought and heat waves
- Biotic disturbances: invasive species, pest outbreaks

... and providing important ecosystem services

- Ecosystem services provided by biodiversity:
 - Resilience to extreme climatic events
 - Higher carbon sequestration, Support of soil quality
 - Better control of soil water content
- Multi-species swards tend to show:
 - An extended plant growing season
 - Higher nutritional values
 - A tendency to higher milk protein content

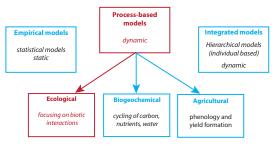
- The high diversity of permanent grasslands sustaining important ecological services is strongly affected by the type and intensity of management.
- Increases in temperature and in aridity lead to long-term shifts in botanical composition.
- The response of the overall phenology of a grassland assemblage to climate variability and change directly depends on the composition.

Could a process-based model simulating explicitly community dynamics in multi-species managed grasslands be useful to better understand the phenology of the assemblage?

Explicit modelling of multi-species swards

- High potential of species rich grasslands highlights the need to model the composition of those assemblage in response to different managements and climates.
- Modelling Diversity: one on the 15 keys challenges for grasslands models^a
- Diversity: only poorly included in grasslands models without an explicit dynamics

a (Kipling et al., 2016)


Building the DynaGraM model

Approach

Modeling the **diversity - productivity- stability** relationships Build a model of herbaceous cover in response to **management** & **climate**

Scientific challenges

High priority for explicit modeling of **multi-species** swards Simulating the **botanical composition** under various managements **Process-based models**: functional and taxonomic composition

Building the DynaGraM model

 \rightarrow Modelling diversity & productivity with the main ecological processes

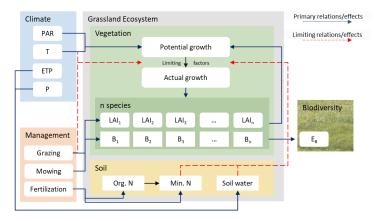
Modelling frame

- Ordinary differential equation integrating the main ecological processes
- Inter-specific competition on mineral resource Nm
- Herbaceous aboveground biomass of n species or species groups

Key model assumptions:

- Absence of specific description of phenological stages of plants
- Exclusion of the plant allocation strategies:
 - absence of a root system dynamics
 - no distinction between leaves and stems
- Growth and senescence mechanisms:
 - an isolated system: no recruitment from seed bank and no colonization
 - only a vegetative reproduction
- Soil mineral resource: absence of N acquisition by legumes

Building the DynaGraM model


 \rightarrow Modelling diversity & productivity with the main ecological processes

MODEL INPUTS

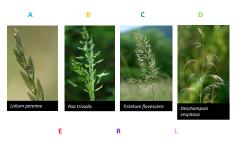
- \rightarrow climate data (T, PAR, Precipitation, PET)
- \rightarrow number and identity of initial species
- \rightarrow management form

MODEL OUTPUTS

 $\rightarrow B_i(t)$ biomass of the herbaceous species in kg.ha⁻¹

Case study: grasslands of the Jura Mountains

 \rightarrow Simulation of a theoretical grassland in Pontarlier, Jura, France (900m)


Mosaic of wood-pastures and grasslands used for dairy farming

- define typical vegetation, management, soil and climatic conditions
- climate: repetition of the standard year 2004

Case study: grasslands of the Jura Mountains

 \rightarrow Simulation of a theoretical grassland in Pontarlier, Jura, France (900m)

7 plant functional types described by representative species

(Ansquer et al. 2004, Fourrages; Moulin et al. 2018, Ecological Modelling)

4 grass functional types

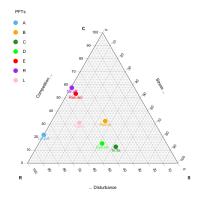
A early and fast-growing grasses in fertile and frequently disturbed grasslands

B competitive and productive grasses in fertile and unfrequently disturbed grasslands

C late and slow-growing grasses in infertile and frequently disturbed grasslands

D late and slow-growing grasses in infertile and unfrequently disturbed grasslands

3 lifeforms of dicots E tall erect forbs


R small rosette or creeping forbs

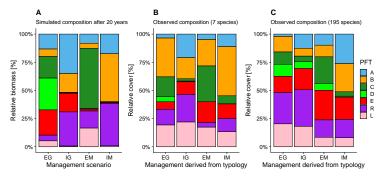
L legumes

Case study: grasslands of the Jura Mountains

Table: Viable strategies according to twogradients perturbation-stress (Grime, 1977)

Intensity of perturbations	Intensity of stress	
	Low	High
Low	C - competitive	S - stress tolerant
High	R - ruderal	(No viable strategy)

Anthropogenic disturbances


Extensive grazing: 0.5 ABU.ha⁻¹ along 134 days per year Intensive grazing: 1.5 ABU.ha⁻¹, mineral fertilization (90 kg Nm ha⁻¹ a⁻¹) Extensive mowing: 2 cuts per year (26 June, 23 September) Intensive mowing: 3 cuts per year with mineral fertilization of 180 kg ha⁻¹ y⁻¹

Response of the composition to managements

Results. Impact of management on community composition

Identical **initial species distributions**, 20 years simulations for each scenarios **Markedly distinct** community **patterns** emerged in response to **type** - **intensity 68 floristic relevés** of permanent grasslands sampled at 800–900 m in the French Jura Mountains

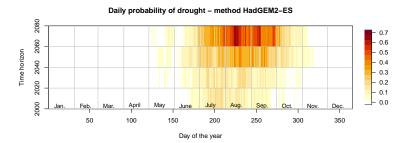
Comparison of model outputs to expected species or functional compositions revealed, in spite of obvious divergences in the details, **common overall features**

Moulin et al., 2020, Ecological Modelling)

Climate change: increases in temperature and aridity

Context

How the overall phenology responds to increases of temperature and aridity?

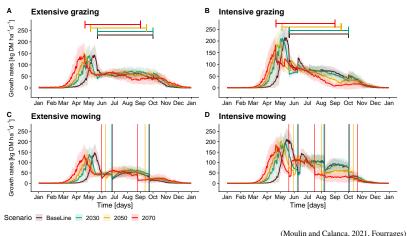

Approach

As the phenology response strongly depends on the botanical composition

 \rightarrow application of the *DynaGraM* model, even with weak phenological description

Scientific challenges

Generation of a likely future climate: scenario RCP 8.5, model HadGEM2-ES How increasing summer aridity affects the species composition of pastures? Key requirement for gauging climate change effects on forage quality

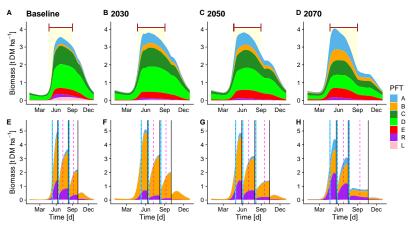


Response of the vegetation to climate changes scenarios

Results. Climatic impact on growth rates

Progressive **impacts** of summer **aridity** on **intensive forms** of managements **Multi-species** swards better endure **extreme** droughts, with **extensive form** of land uses

Challenge: schedule and level of disturbances for intensive forms for far future

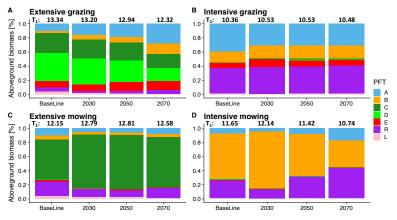

Thibault Moulin

Response of the vegetation to climate changes scenarios

Results. Climatic impact on species composition

Progressive **impacts** of summer **aridity** on **intensive forms** of managements **Multi-species** swards better endure **extreme** droughts, with **extensive form** of land uses

Challenge: schedule and level of disturbances for intensive forms for far future


Thibault Moulin

Response of the vegetation to climate changes scenarios

Results. Climatic impact on species composition

Progressive **impacts** of summer **aridity** on **intensive forms** of managements **Multi-species** swards better endure **extreme** droughts, with **extensive form** of land uses

Challenge: schedule and level of disturbances for intensive forms for far future

(Moulin and Calanca, 2021, Fourrages)

Thibault Moulin

Key messages

- Composition is strongly influenced by type / intensity forms of the land use
- Botanical composition responds to both short-term climatic fluctuations and long-term shifts
- Even a moderate climate change scenario induces significant changes on grassland biodiversity
- Climate change impacts are mediated by management
- ► Unclear response of the management form to the phenology: → potentially related to the selection of the 7 representative species

Interest of our approach for phenology modelling

- Could this process-based model help appreciating the response of the overall phenology of a grassland assemblage to climate variability and change?
- Phenology description: integrating the phenological stages of the herbaceous plants?
 - ⇒ Ecodormancy, chilling/forcing accumulation
 - \Rightarrow subdivision of the biomass in several growing stages
- ► Sum of temperatures are closely connected with the phenology of the cover ⇒ sophistication of the model dependence to the sum of temperatures, currently only describe with a single seasonal effect term

Thank you for your attention!