Monitoring phenology of cherry-tree orchards from remote sensing: analysis of fAPAR time-series to identify flowering and the start of fruit growth.

<u>Raúl López-Lozano¹</u>, Papa Khaly Diop¹, Dominique Courault¹, Claude Doussan¹, André Chanzy¹, Marta Debolini¹, Pierre Rouault¹, Fabrice Flamain¹, Guillaume Pouget¹, Matthew McCabe²

¹INRAE – AvigNo Université Unit EMMAH (Mediterranean Environment and Modelling of Agroecosystems). AvigNo (France)

²King Abdullah University . Hydrolog, Agricultural and Land Observation. Thuwal (Saudi Arabia)

• In Mediterranean regions, irrigation is the main consumer of freshwater, and the pressure on the use of water is increasing in these regions.

- Need to develop methodologies to monitor and plan the use of water resources at the local and regional scale
- Remote sensing provide access, at the local/regional scale, to leaf area expansion, which can be used as an proxy to phenological dates

How can we estimate flowering and fruit growth dates from

Sentinel 2 satellite time-series?

13 cherry-tree orchards in the Ouvèze basin (SE France), monitored during 2021

hopprox. area 8800 km2

VerSEau project, funded by RégionSud Proximal to remote project, funded by KAUST

Id	Age	Area (ha)	Planting pattern (m)	Irrigated?	Grass?
50	> 5 years	0,72	6 x 7	Yes	Yes
56	> 5 years	0,84	8 x 7	Yes	Yes
72	> 5 years	0,89	7 x 7	Yes	Yes
183	> 5 years	1,10	5 x 5	Yes	No
1378	> 5 years	0,54	7 x 7	No	Yes
1409	planted in 2016	0,42	6 x 7	Yes	No
1418	> 5 years	0,22	6 x 7	Yes	Yes
1423	> 5 years	0,62	6 x 7	Yes	Yes
3031	> 5 years	0,25	6 x 7	Yes	Yes
3099	> 5 years	4,57	4.5 x 9	Yes	Yes
3150	planted in 2017	3,09	5 x 5	Yes	Yes
3311	> 5 years	0,74	7 x 7	Yes	Yes
3463	> 5 years	0,33	5 x 6	Yes	Yes

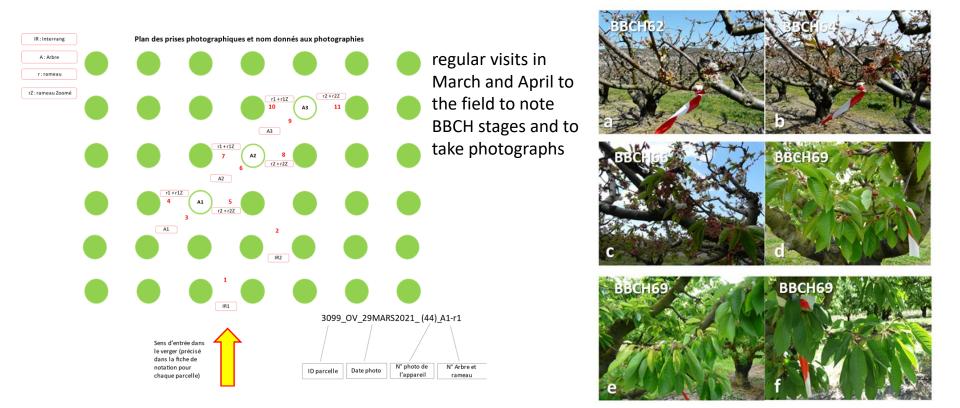
On each orchard, a homogeneous plot (15 x 15 m) was selected for RS and in situ monitoring

Site d'étude

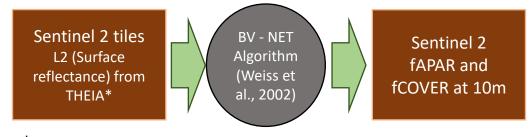
Challenge! Understanding the contribution of the grass when interpreting time-series

VerSEau project, funded by RégionSud Proximal to remote project, funded by KAUST

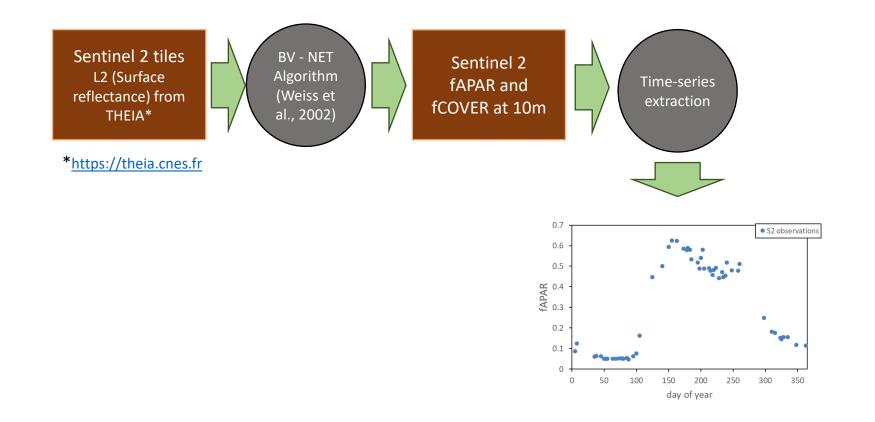
Id	Age	Area (ha)	Planting pattern (m)	Irrigated?	Grass?
50	> 5 years	0,72	6 x 7	Yes	Yes
56	> 5 years	0,84	8 x 7	Yes	Yes
72	> 5 years	0,89	7 x 7	Yes	Yes
183	> 5 years	1,10	5 x 5	Yes	No
137	B > 5 years	0,54	7 x 7	No	Yes
1409	9 planted in 2016	0,42	6 x 7	Yes	No
141	B > 5 years	0,22	6 x 7	Yes	Yes
1423	3 > 5 years	0,62	6 x 7	Yes	Yes
303	1 > 5 years	0,25	6 x 7	Yes	Yes
3099	9 > 5 years	4,57	4.5 x 9	Yes	Yes
315	planted in 2017	3,09	5 x 5	Yes	Yes
331	1 > 5 years	0,74	7 x 7	Yes	Yes
3463	3 > 5 years	0,33	5 x 6	Yes	Yes



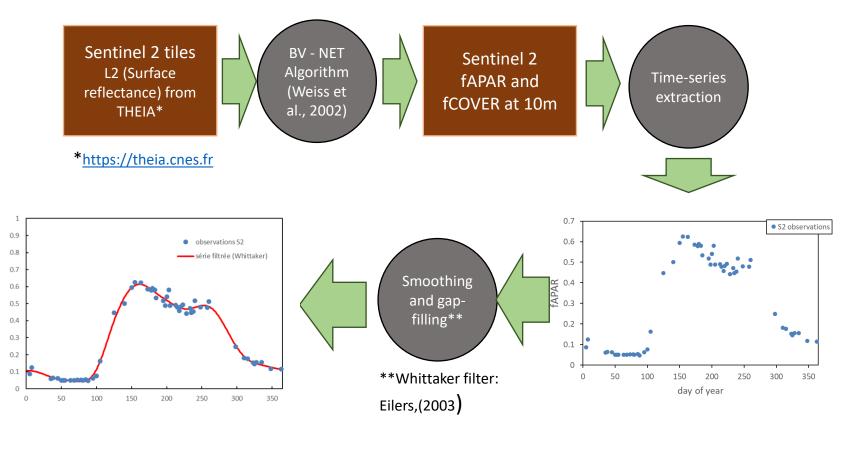
On each orchard, a homogeneous plot (15 x 15 m) was selected for RS and in situ monitoring


In situ anntotation of tree phenology

Acquisition and processing of Sentinel 2 fAPAR and fCOVER time-series

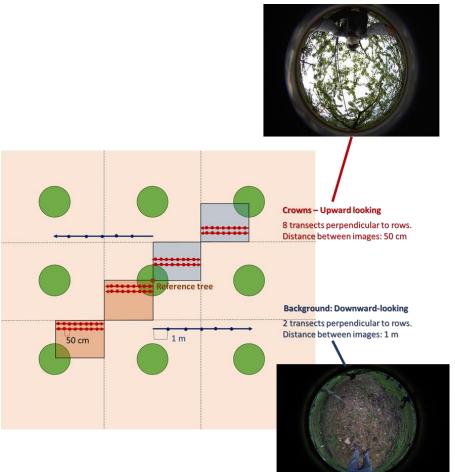


*<u>https://theia.cnes.fr</u>


Acquisition and processing of Sentinel 2 fAPAR and fCOVER time-series

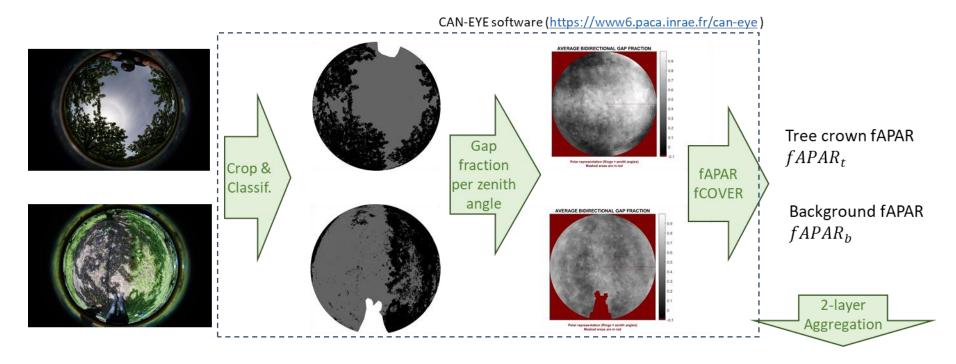
Acquisition and processing of Sentinel 2 fAPAR and fCOVER time-series

In situ validation of fAPAR and fCOVER

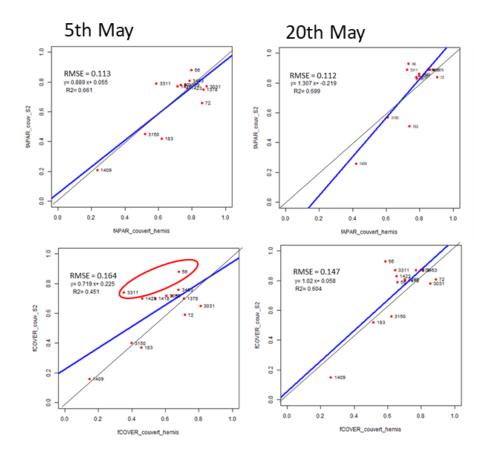

Objective:

- a) Understanding the contribution of crowns and background on the satellite observations
- b) Validating the total canopy fAPAR / fCOVER from Senetinel 2

In situ sampling with digital hemispherical photographs: up- and down-looking


2 dates: 5th May and 20th May 2021

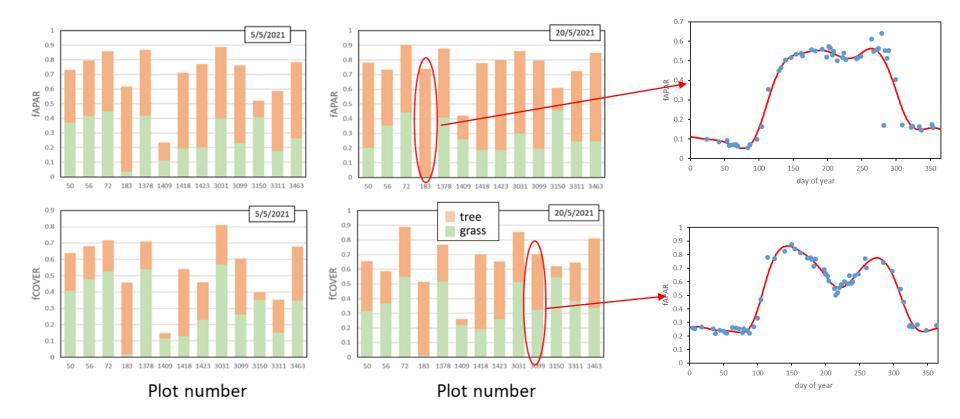
In situ validation of fAPAR and fCOVER

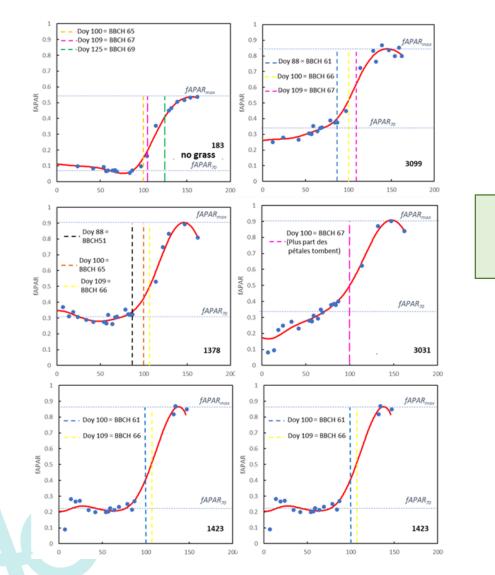


Total canopy fAPAR $fAPAR_c = fAPAR_t + (1 - fAPAR_t) * fAPAR_b$

Validation of Sentinel 2 fAPAR and fCOVER products

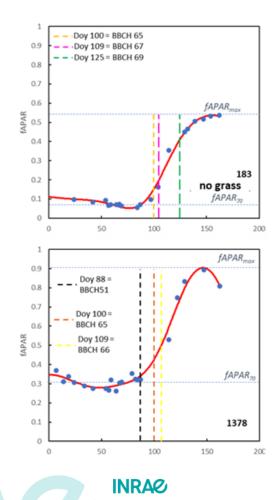
Overall, satisfactory results for total canopy fAPAR and fCOVER ($fAPAR_c$, $fCOVER_c$), RMSE 0.1 – 0.15


Slight over-estimation on specific plots with a small contribution from trees


Contribution of soil background to the total canopy fAPAR/fCOVER

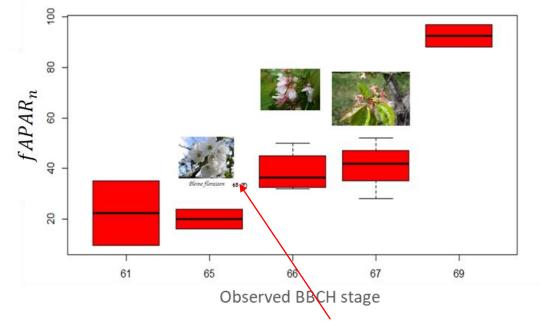
Relationshp between fAPAR/fCOVER and phenological dates

Normalising fAPAR and fCOVER to mitigate the influence of soil background


$$fAPAR_n = 100 * \frac{fAPAR_j}{fAPAR_{max} - fAPAR_{70}}$$

 $fAPAR_{n,j}$: fAPAR normalisé (exprimé en %) pour le jour *j*, $fAPAR_{70}$: fAPAR at doy 70 (before flowering) $fAPAR_{max}$: maximum fAPAR

Hypothesis: canopy greening after doy is exclusively driven by trees



Relationshp between fAPAR/fCOVER and phenological dates

Titre

All plots with <50% of grass contribution

Full flowering occurs in during the first 20% of the total « greening »

Normalizing fAPAR permits to reduce the influence of the soil background

> Conclusions and perspectives

- Estimating phenological dates in orchards from satellite is challenging, with grass in the background impacting the interpretation of time-series
- Normalizing the fAPAR and fCOVER with seasonal values (min, max) reduces the effect of the background. The relationship between the normalized indicators with full flowering dates seems consistent across plots
- Nevertheless, quantifying the error between observed and predicted dates is still needed. ->
 More observations
- **Disentangling the time-series** of grass and tree crowns **requires higher resolution**: e.g. SkySat (1m multispectral). In 2021, we are evaluating this possibility with UAV.

