Molecular Phenology in Trees

Akiko Satake (Kyushu University, Japan)

June 24, 2022

JOIN US FOR PHENOLOGY 2022

Phenology at the crossroads 20-24 June 2022, Avignon, France

Seasonal variations in environmental factors

Seasonality of photoperiod and temperature virtually disappear in tropical rain forests

Latitudinal gradient of reproductive phenology

Zhou et al. 2022 Nat Commun

A cross-scale approach for phenology

We can understand the physiological mechanism and evolutionary history of phenology.

that have evolved from a common ancestral gene

Molecular and genetic knowledge in model plants

Aikawa et al. 2010 PNAS

Vimont et al. BMC Genomics 2019

Molecular phenology in non-model plants

Field monitoring of phenology Field transcriptome Target gene expression analyses

> Perennial herb Arabidopsis halleri

Fagus crenata (Japanese beech)

Fagaceae

Quercus glauca

Lithocurpus edulis

Shorea curtisii Shorea leprosul

Dipterocarpaceae

Today's topics

1. Tropical phenology and impacts of climate change

2. Comparative molecular phenology in Fagaceae

Long-term flowering and fruiting data

Monthly record of present or absence of flowers and fruits in **210 tree species from 41 families in arboretums in Malaysia.**

Tropical phenology in Southeast Asia

- Number of flowering species is low in late 1970s.
- More than 70 species flowered in 1985.
- Synchronized flowering, in which more than 20% of species participate (♥), occurred once in 2–8 yrs.

What is a trigger of general flowering?

Low temperature

Several nights of low temperature Ashton et al. 1988

Drought

30 days total rainfall that is less than 40mm Sakai et al. 2006

Low temperature × Drought

Synergistic effect Chen et al. 2018

Observed climate change over 30 yrs

How climate change impacts on tropical phenology?

Temperature

Modelling signal accumulation and integration

Parameterization and model selection

Clustering into optimal number of phenological groups

We identified 6 phenology groups

Different pheno groups showt different environmental responses under same environment

> Group **1**, **2**, **5**, **6** response to drought

Group **3, 4** (57% of total number of species) response to low temperature and drought

The differential sensitivity to environmental signals will have a profound effect on fitness.

How about molecular phenology in tropics?

Malaysia research institute (FRIM)

Semangkok

From 2012

S. leprosula Depterocarpaceae

Depterocarpaceae Shorea curtisii S. leprosula

From 2011

Monitoring molecular phenology of tropical trees

Molecular phenology of tropical trees

Activation of FT and LFY induces floral induction.

Molecular phenology is effective to monitor physiological changes that cannot be seen with eyes.

Integrated drought and low temperature signals explain observed molecular phenology

Impacts of climate change on tropical phenology

Cool temperature response may be adaptive to the past but not to the future climate

Today's topics

1. Tropical phenology and impacts of climate change

2. Comparative molecular phenology in Fagaceae

Soepadmo 1972 Fig. 1. Present distribution of Fagaceae. Add: New Caledonia.

In 22. Enforcempton manufaliation X. CANTER in Habbit A langitudinal network of structure of structure and fraint, both $F_{\rm B} = -4$, wears (REAS) A. CANTE, c. Complex side using of complex mean freem above, both maximum component material structure of complex means that the component material structure (as a structure of complex means that the structure of the structure of complex means that the structure of the s

Rich species diversity in Southeast Asia ストリートピュー - 11月 2009

Kyushu University, Ito campus December 2009, google map

August 2017

EN70

Lithocarpus edulis

From target gene analysis to genome-wide transcriptomics

We identified four seasons in genome-wide expression profiles

Hierarchical clustering of monthly expression profiles

27 % of genes revealed different phenology

PC3 characterizes phenological difference between species

PC1 is characterized by genes associated with stress response

Top 2.5% genes (n= 175) with high loading values for PC1

PC2 is characterized by genes associated with energy acquisition and growth

Top 2.5% genes (*n*= 175) with high loading values for PC2

PC3 is characterized by genes associated with pollination

Top 2.5% genes (n= 175) with high loading values for PC3

Different molecular phenology in PC3 genes would be the basis for different fruiting habits

Ancestral trait estimation suggests firm genetic basis for delayed fertilization

Evolutionary transition rate from 2-year to 1-year fruiting type is higher than the opposite.

PC3 genes can be the candidates for the genetic basis of delayed fertilization.

Conclusion

Future perspectives

Comparative molecular phenology + Genome resources + Development of predictive models

Evolution of phenotypic diversity
Forecasting future flowering phenology under changing environments

Acknowledgements

Shinya Numata (Tokyo Metropolitan University) Koharu Yamaguchi (Kyushu University) Masaaki Shimizu (Kyushu University) Gen Sakurai (NARO) Ayaka Morimoto (Tokyo Metropolitan University) Noraliza Alias (FRIM) Nashatul Zaimah Noor Azman (FRIM) **Tetsuro Hosaka (Hiroshima University)** Ai Nagahama (Kyushu University) Tetsukazu Yahara (Kyushu University) Myotoishi Chihiro (Kyushu University) Junko Kusumi (Kyushu University) Kayoko Ohta (Kyushu University) Kiminori Toyooka (RIKEN) Noriko Takeda (RIKEN)

Bud Z-score

Modelling gene regulatory dynamics

What happens in a warmer world?

開花は次世代を残す 重要なイベント

開花機会の減少は 絶滅リスクの増大に もつながる可能性

3 pairs of leaf and bud were sampled every two weeks from 3 individuals. RNA sequence (Illumina Hiseq2500) using samples from May to Dec. Probe design for DNA microarray.

