

When citizens are at the forefront of science

Isabelle Chuine, Iñaki Garcia de Cortazar-Atauri,

TEMPO members,

the volunteers of the Observatoire des Saisons and Phenoclim programs

We are in a transition to a new climate regime

Global warming dramatically accelerated in the last 20 years

We are in a transition to a new climate regime

> The frequency of extreme climatic events is increasing

Heatwaves

are more frequent and more extreme

Heavy rainfall

Drought

© IPCC WG1 Report 2021

Fire weather

What about plant seasonal activity?

The response of spring onset to warming has not been always linear

What about species seasonal activity?

Response of spring onset to spring versus winter warming

Contribution of winter chilling and spring forcing to the response of leaf unfolding date to global warming (ST)

chill sum

forcing rate

Zhang et al NCC 2022

Fs

Tree species

Fe

Qr

All

Bp

Abnormal phenological events

Abnormal phenological events

Events	Consequences		
Autumn and winter leaf flush and flowering	Frost damage Mismatch with pollinators Fruit abortion Resource loss		
Erratic and long lasting flowering	Flower malformation Increased mismatch between trees -> decreased pollination success and yield		
Very early/late leaf senescence	Increased/decreased growing season length		

🕸 💋 Observatoire ★ 🔅 des Saisons		
À PROPOS		
ACTUALITÉS		
ÉVÈNEMENTS		

COMMENT PARTICIPER

ESPÈCES À OBSERVER

RÉSULTATS

OUTILS & RESSOURCES

RELAIS

Accueil > Actualités > Des floraisons en automne ? Partagez vos observations !

LE 10 OCTOBRE 2019, PAR ADMIN

Des floraisons en automne ? Partagez vos observations !

Connexion

Depuis 2015, vous avez été plusieurs à nous mentionner de nouvelles floraisons automnales, indicatrices d'un déreglement du rythme saisonnier de certaines espèces. Ces floraisons exceptionnelles s'expliquent en partie par les conditions météorologiques de ces derniers mois : été très sec et automne chaud.

Ce phénomène n'est pas encore bien expliqué et vos observations sont précieuses pour mieux le comprendre !

Season shift of flowering

How exceptional?

Y	ears	Species	Phenological anomaly	Reference
1	.116-1117	Strawberries	Flowering in autumn and fruit ripe at Christmas	Pfister et al., 1998
1	186-1187	Fruit trees Birds	Flowering in December-January Nesting in December-January	Pfister et al., 1998
1	289-1290	Trees Grapevine	No leaf color change in autumn Flowering in January	Angot 1883 Pfister et al . 1998
1	.327-1328	Fruit trees Grapevine	Flowering in January Flowering in April, ripe late July	Angot 1883

How exceptional?

2006-2007: the former warmest winter on record

Flowering date anomalie of hazel and snow drop in Germany

Temperature anomalie relative to 1995-2014

Sept-Oct 3.6 times cooler than 2006

Nov to Fev 0.3 times hotter than 2007

Lessons and consequences

- Citizen science programs are an efficient way to collect observations on abnormal phenological events and sometimes the only one
- Current databases and protocoles are not always adapted to collect exceptional phenological events
- Abnormal phenological events make it more and more difficult the stastistical detection of erroneous data
- Our understanding of the regulation of plant activity is still very much deficient
- We are unable to forecast such events and their consequences although they might become more and more frequent

Acknowlegments

Season shift of flowering

Abnormal phenology events

Event	Biological response	Climatic conditions	Frequency post 2020	Consequences	
	No dormancy induction at autumn	Increased temperature in autumn	7	Frost damage	
Late summer, autumn and winter leaf flush	Abnormally short post dormancy	Increased temperature in winter following a short cold spell in autumn	7	Leaf malformation Mismatch with pollinators Fruit abortion Resources loss Weakening of the tree	
and flowering	Dormancy break following a destruction of the foliage	Heat wave, Drought, Storm	7		
Erratic and long lasting flowering	Incomplete dormancy break	Increased winter temperature	7	Flower malformation Increased mismatch between trees – decreased pollination success and yield	
Very early leaf senescence	Early cues triggering leaf senescence	Increased summer drought	7	Increased growing season length	