Suivi de la végétation à partir de mesures de transmittance

F. Baret INRA Avignon

Loi de Beer/Poisson

Transmission dans un mileu homogène purement absorbant

Interet de la mesure de la fraction de trous (transmission)

- fCover= 1 Po(0)
- $fAPAR(\theta_s) \approx fIPAR(\theta_s) = 1 Po(\theta_s)$

•
$$Po(\theta) = e^{-k.LAI}$$
 $k = \frac{G(\theta, \theta_l)}{\cos(\theta)}$

Fonction de projection $G(\theta)$

Relation entre GAI et Po

Erreur sur l'estimation du LAI

Echantillonnage spatial

Entre 5 et 15 points de mesures sont nécessaires pour représenter une surface de 10-20 m de coté Bien prendre en compte l'effet de rang (transects en diagonale).

Les instruments de mesure

System	Illumination conditions	Spectral domain	No. of zenith angles	Azimuthal coverage	Gap size distribution	Reference readings	Post-processing	Computer resources
DEMON	Direct	430 nm	-	1 	No	Yes	No	Low
Sunfleck ceptometer	Diffuse, direct	PAR	-	_	Yes	Yes	Yes	Low
AccuPAR	Diffuse, direct	PAR	-	(m)	Yes	Yes	No	Low
LAI-2000	Diffuse	<490 nm	5	Full range selectable by hardware	No	Yes	No	Low
Tracing Radiation and Architecture of Canopies (TRAC)	Direct	PAR	1 <u>0</u> 1		Yes	Yes	No	Low
Hemispherical Cameras	Diffuse, direct	Selectable	Full range	Full range selectable by software	Yes	No	Yes	High
Multiband Vegetation Imager (MVI)	Diffuse	VIS and NIR	Full range	Full range	Yes	No	Yes	High
Ideal device	Diffuse and direct	VIS and NIR	Full range	Full range selectable by software	Yes	No	-	-

Comparison between instruments allowing indirect LAI measurements

Intérêt de la photographie hémisphérique:

- •Peu coûteuse (appareil+fish-eye<1000 euros)
- •Facile à mettre en œuvre (conditions d'éclairement)
- Pas de mesures de référence
- •Possibilité de mesures sur couvert très peu développés
- •Possibilité de contrôle de la qualité des mesures (images)
- Possibilité de distinction d'éléments non verts
- Possibilité de calcul de l'agrégation

CAN_EYE: les différentes étapes

Green segmentation

Classical methods for green segmentation

• Thresholding a color index.

- Color indices. Several color indices have been proposed
 - Excess Green, with mainly two main formulations:
 - Absolute formulation: ExGa=2G-R-B Woebbecke et al. 1995 ; Garcia-Santillan 2017
 - Relative value: ExGr=(ExGa)/(R+G+B) Meyer, 2008; Gee, 2008;
 - ExR=(1.4R-B)/(R+G+B)
 - ExGr-ExR Meyer, 2008;
 - NDI=(G-R)/(G+R) Perez et al. (2000) ; Hunt et al. (2005)
 - VARI=
 - CIVE & VEG Guijarro, 2010; Hague, 2006
 - HSV or LAB YES color space transformation (Gnädinger, 2017; Lootens, 2016 Saber, 1996
 - RDC (Reduced Dimension Clustering): Kmeans from distances to main lines in the RGB space (Steward, 2004)
 - Modified Hue
 - i1i2i3 or (i1i2i3)new (Philipp, 2002)
- Thresholding.
 - Optimized by training (Meyer, 2008)
 - Otsu automatic thresholding was used in most cases (Meyer, 2008)
 - Adaptive threshold (Saber, 1996)
- Training a machine learning:
 - random forest Guo, 2013
 - SVM
- 3D color space segmentation Hemming, 2000

Discrimination dans le plan Saturation / Hue

Résultats 1/3: Barrax

Resultats 2/3: Mali

Resultats 3/3: Sud-ouest

P@rameters

A DEWARD AND A DEVELOPMENT OF A DEVELOPMENT OF

Criterions	Hemispherical PAR	Directional blue	
	sensors	sensors	
PAI estimates	Yes	Yes	
PAR measurement	Yes	No	
Albedo measurements	Yes	No	
Sensitivity to illumination conditions	Yes (sun position, diffuse fraction)	No	
Sensitivity to leaf clumping (for PAI estimates)	Yes	restricted	
Spatial sampling	Larger (±90°)	Restricted (±20°)	
Cost	50€	25€	

CC BY-NC-ND

PAR@METER

• Better suited for agriculture

Absolute calibration based on AERONET measurements

Rayonnement PAR (µmol.m⁻².s⁻¹)

Absolute calibration needed for diffuse fraction estimation

Estimates of the diffuse fraction from irradiance measurements based on 6S model simulations

PAI estimation

Adjusting ALA and PAI over a temporal window of few days

$$J = \sum_{1}^{n} \omega \cdot \left(\tau - \hat{\tau}\right)^{2} + J_{prion}$$

The Poisson model is currently used under randomly distributed vegetation elements The radiative transfer model may be refined for specific vegetation types

Additional results

LAI: several definitions

PASTIS 57°

Article

Monitoring Forest Phenology and Leaf Area Index with the Autonomous, Low-Cost Transmittance Sensor PASTiS-57

Benjamin Brede ^{1,*}, Jean-Philippe Gastellu-Etchegorry ², Nicolas Lauret ², Frederic Baret ³, Jan G. P. W. Clevers ¹, Jan Verbesselt ¹, and Martin Herold ¹

Comparison with PAR

sensors

Why 57° towards North in the blue?

- Why blue spectral domain?
 - Better contrast between vegetation (almost black) and sky (rayleigh and aerosol scattering)
 - Limits multiple scattering in the canopy
- Interest of 57°
 - Minimization of leaf angle distribution effect
 - Minimization of plant clumping effect
 - Compromise between sensitivity (short path length) and spatial sampling (longer path length)
- Why North orientation?
 - Avoids direct sun light
 - Reverse to South in the southern hemisphere!

Some results on phenology: direct ground observations

14 April

7 May

22 June

Typical dynamics measured

Incident

Transmitted

Prototype sensors (PAR domain, 40° zenith angle)

27

Comparison with visual notations

Performances of stages

Aug Sep Oct Nov Dec Jan Feb Aug Sep Oct Nov Dec Jan Feb

Conclusion

- (Relatively) low cost systems are now available for ground measurements of leaf development:
 - LAI
 - FAPAR
 - Albedo (PAR or PIR)
- Good performances with regards to visual estimates of phenology
- Good consistency with satellite observations