Workflows d'analyse d'image Pour le phenotypage

Christian Fournier

CC BY-NC-ND

Workflow Systems

Tensorflow (Google), Abadie 2016

AVS, IEEE CG&A, Upson 1989

Orange, Demšar, 2004

LabView, Whitley, 2001

Kepler, Ludäscher, 03

VisTrails, Callahan, 2006

Snakemake, Köster, 2012

Services of Scientific Workflow Systems

Sasha, Prædæk, ©ohen-Boulakia, Valduriez

Phenomics@LEPSE

 meristem temperature
 Soli water status transpiration rate

 image: construction of the status transpiration rate

 image: construction of the status deta logger

 image: constructio of the status deta logger

Screening of phenotypic variability in controlled/ greenhouse conditions

Ecophysiology & modelling of response traits integration in crop models

1

Model assisted phenotyping

Genomic prediction of adapted genotypes for Current and future environments

Check / calibrate field prediction in multi-site genetic trial

What part of the 'phenoarch' phenotypes can be use to predict behavior in the field ?

Image Workflows @ phenoarch

Temperature map using a network of wireless sensors (ZigBee protocol)

A method for estimating local light availability in the greenhouse (IPPS 2016, Mexico)

Every hour every day of year Hour

60

10 20 30

Incident light map within greenhouse using FSPM tools

Sky luminance model

https://github.com/openalea-incubator/astk

GreenHouse reconstruction

https://github.com/openalea-incubator/caribu

Rouet, Fournier (ongoing)

Virtual canopy illumination

Artzet et al. 2019

PHENOME: Réunion Générale Paris- 20 octobre, 2018

Dependency of RUE on light

Combining experiments and environments (and scales)

A method for high throughput estimation of maize **stomatal conductance**, based on transpiration, leaf area and micro-meteorological conditions (Alvarez Prado *et al. PCE* 2018)

Disecting CI with architectural traits (R. Perez PCE 2019)

Symbols	Units	Traits	Type of area distribution
LA	m²	Plant leaf area	-
h _{stem}	cm	Stem height	vertical
θ	degrees	Plant inclination index	vertical & horizontal
rh _{PAD}	-	Plant relative height where half plant leaf area is reached	vertical
b _{PAD}	-	Distribution of leaf area along plant height	vertical
radius	cm	Plant radius	horizontal & vertical
σ_{az}	degrees	azimuths dispersion	horizontal
Δ _{row}	degrees	azimuth deviation from row	horizontal

3D reconstruction pipelines

Phenomenal: An automatic open source library for 3D shoot architecture reconstruction and analysis for image-based plant phenotyping

Artzet et al. 2019

3D geometric multi-view reconstruction => multi-species

3D reconstruction of plant architecture (topology and geometry)

- Organ number
- Organ dimensions (length and width)
- Organ tracking (in progress)

Model assisted pipeline !

Phenomenal output Fit FSPM model (ADEL) Anotated output

Fournier et al, IcropM

Prediction of grain number combining gen prediction with dynamic models

Genomic prediction of responses

Soil water potential (Mpa)

Predict, (machine) learn & estimate

using a 3D canopy structure model

Shouyang Liu^{a,*}, Fre**CGBAY**^(a)N**D**^(a)N**D**^(b) Abichou^b, Fred Boudon^c, Samuel Thomas^d, Kaiguang Zhao^e, Christian Fournier^f, Bruno Andrieu^b, Kamran Irfan^a, Matthieu Hemmerlé^g, Benoit de Solan^d

Model assisted phenotyping for HT automated acquisition

Field

Platform

Plant phylloclimate

Simulation local environment

New co-variables

Dissecting plant responses

Test/validate FSPM process model <-> 'productive FSPM'

Extract traits / response traits

Gene to phenotype upscaling

Extend / Link to crop models

Plant growth analysis

Control of irrigation

Weigth plants + pots

Estimate biomass

Irrigate for constant SWC

High-troughput method to track silk growth in maize

Nicolas Brichet¹, Christian Fournier¹², Olivier Turc¹, Olivier Strauss³, Simon Artzet¹², Christophe Pradal^{2,45}©, Claude Welcker¹, François Tardieu¹© and Llorenç Cabrera-Bosquet¹¹© 3. Machine learning and dynamic analysis of silk growth

Brichet et al. 2017 Plant Methods

High-troughput method to track silk growth in maize

for tracking the growths of maize ear and silks in a high-throughput phenotyping platform

Nicolas Brichet¹, Christian Fournier^{1,2}, Olivier Turc¹, Olivier Strauss³, Simon Artzet^{1,2}, Christophe Pradal^{2,4,5}, Claude Welcker¹, François Tardieu¹, and Llorenç Cabrera-Bosquet^{1,6}

Camera Calibration & multiview reconstruction

- OpenCV chessboard detection + fiting of moving pinhole camera along a rotation axis
- Projection function

Iterative space carving for 3D reconstruction

- Defines a voxel of the size of the scene.
- Iterative octree subdivision
- Keep voxel projected on segmented object

CC BY-NC-ND

Surface reconstruction & Mesh decimation

3D Skeleton

3D thinning

A 3D 6-subiteration thinning algorithm for extracting medial lines of Kalman Palagyi and Attila Kuba

Space colonization

Implementation of Xu et al. 07 method for main branching system (space colonisation clustering)

Longest shortest path

voxel cloud graph shortest path transform (networkx) + interative simplification with planar intersection along longest paths

Model assisted measurement of plant development

What influences RIE?

Competitiveness index (CI)

Competition pressure (CP)

Blue: low competitiveness Red: high competitiveness gree: low competition pressure Red: high competition pressure

Disecting CI with architectural traits (R. Perez ongoing)

 \mathbf{X}_{GH}

3

X_{GH}

CC BY-NC-ND

Phenotyping architectural development

Organ detection / tracking

Adel developmental model = f(T, Light, Water)

Functional phenotyping

FSPM transpiration model

Linking Crop and FSPM models

- Shared processes
- Upscaling models

Mixed FSPM -Crop models

M3P/Phenome solution: InfraPhenoGrid

Pradal C, Artzet S, Chopard J, Dupuis D, Fournier C, et al. (2016) InfraPhenoGrid: A scientific workfow infrastructure for plant phenomics on the Grid. Future Generation Computer Systems (in press).